

Welcome to Tentaclio’s documentation!

Contents:

	Tentaclio

	Quick Examples.
	Read and write streams.

	Copy streams

	Delete resources

	List resources

	Authenticated resources.

	Database connections.

	Pandas interaction.

	Installation
	Developing.

	How to use

	Quick note on protocols structural subtyping.

	Documentation
	Building docs

Indices and tables

	Index

Tentaclio

[image: CircleCI status] [https://circleci.com/gh/octoenergy/tentaclio/tree/master]
[image: Documentation Status] [https://tentaclio.readthedocs.io/en/latest/?badge=latest]

Python library that simplifies:

	Handling streams from different protocols such as file:, ftp:, sftp:, s3:, …

	Opening database connections.

	Managing the credentials in distributed systems.

Main considerations in the design:

	Easy to use: all streams are open via tentaclio.open, all database connections through tentaclio.db.

	URLs are the basic resource locator and db connection string.

	Automagic authentication for protected resources.

	Extensible: you can add your own handlers for other schemes.

	Pandas interaction.

Quick Examples.

Read and write streams.

import tentaclio
contents = "👋 🐙"

with tentaclio.open("ftp://localhost:2021/upload/file.txt", mode="w") as writer:
 writer.write(contents)

Using boto3 authentication under the hood.
bucket = "s3://my-bucket/octopus/hello.txt"
with tentaclio.open(bucket) as reader:
 print(reader.read())

Copy streams

import tentaclio

tentaclio.copy("/home/constantine/data.csv", "sftp://constantine:tentacl3@sftp.octoenergy.com/uploads/data.csv")

Delete resources

import tentaclio

tentaclio.remove("s3://my-bucket/octopus/the-9th-tentacle.txt")

List resources

import tentaclio

for entry in tentaclio.listdir("s3:://mybucket/path/to/dir"):
 print("Entry", entry)

Authenticated resources.

import os

import tentaclio

print("env ftp credentials", os.getenv("OCTOIO__CONN__OCTOENERGY_FTP"))
This prints `sftp://constantine:tentacl3@sftp.octoenergy.com/`

Credentials get automatically injected.

with tentaclio.open("sftp://sftp.octoenergy.com/uploads/data.csv") as reader:
 print(reader.read())

Database connections.

import os

import tentaclio

print("env TENTACLIO__CONN__DB", os.getenv("TENTACLIO__CONN__DB"))

This prints `postgresql://octopus:tentacle@localhost:5444/example`

hostname is a wildcard, the credentials get injected.
with tentaclio.db("postgresql://hostname/example") as pg:
 results = pg.query("select * from my_table")

Pandas interaction.

import pandas as pd # 🐼🐼
import tentaclio # 🐙

df = pd.DataFrame([[1, 2, 3], [10, 20, 30]], columns=["col_1", "col_2", "col_3"])

bucket = "s3://my-bucket/data/pandas.csv"

with tentaclio.open(bucket, mode="w") as writer: # supports more pandas readers
 df.to_csv(writer, index=False)

with tentaclio.open(bucket) as reader:
 new_df = pd.read_csv(reader)

another example: using pandas.DataFrame.to_sql() with tentaclio to upload
with tentaclio.db(
 connection_info,
 connect_args={'options': '-csearch_path=schema_name'}
) as client:
 df.to_sql(
 name='observations', # table name
 con=client.conn,
)

Installation

You can get tentaclio using pip

pip install tentaclio

or pipenv

pipenv install tentaclio

Developing.

Clone this repo and install pipenv [https://pipenv.readthedocs.io/en/latest/]:

In the Makefile you’ll find some useful targets for linting, testing, etc. i.e.:

make test

How to use

This is how to use tentaclio for your daily data ingestion and storing needs.

Streams

In order to open streams to load or store data the universal function is:

import tentaclio

with tentaclio.open("/path/to/my/file") as reader:
 contents = reader.read()

with tentaclio.open("s3://bucket/file", mode='w') as writer:
 writer.write(contents)

Allowed modes are r, w, rb, and wb. You can use t instead of b to indicate text streams, but that’s the default.

In order to keep tentaclio as light as possible, it only includes file, ftp, sftp, http and https schemes by default.
However, many more are easily available by installing extra packages:

Default:

	/local/file

	file:///local/file

	ftp://path/to/file

	sftp://path/to/file

	http://host.com/path/to/resource

	https://host.com/path/to/resource

tentaclio-s3 [https://github.com/octoenergy/tentaclio-s3]

	s3://bucket/file

tentaclio-gs [https://github.com/octoenergy/tentaclio-gs]

	gs://bucket/file

	gsc://bucket/file

tentaclio-gdrive [https://github.com/octoenergy/tentaclio-gdrive]

	gdrive:/My Drive/file

	googledrive:/My Drive/file

tentaclio-postgres [https://github.com/octoenergy/tentaclio-postgres]

	postgresql://host/database::table will allow you to write from a csv format into a database with the same column names (note that the table goes after :: :warning:).

You can add the credentials for any of the urls in order to access protected resources.

You can use these readers and writers with pandas functions like:

import pandas as pd
import tentaclio

with tentaclio.open("/path/to/my/file") as reader:
 df = pd.read_csv(reader)

[...]

with tentaclio.open("s3::/path/to/my/file", mode='w') as writer:
 df.to_parquet(writer)

Readers, Writers and their closeable versions can be used anywhere expecting a file-like object; pandas or pickle are examples of such functions.

Notes on writing files for Spark, Presto, and similar downstream systems

The default behaviour for the open context manager in python is to create an empty file when opening
it in writable mode. This can be annoying if the process that creates the data within the with clause
yields empty dataframes and nothing gets written. This will make Spark and Presto panic.

To avoid this we can make the stream empty safe so the empty buffer won’t be flushed if no writes have been performed so no empty file will be created.

with tio.make_empty_safe(tio.open("s3://bucket/file.parquet", mode="wb")) as writer:
 if not df.empty:
 df.to_parquet(writer)

File system like operations to resources

Listing resources

Some URL schemes allow listing resources in a pythonnic way:

import tentaclio

for entry in tentaclio.listdir("s3:://mybucket/path/to/dir"):
 print("Entry", entry)

Whereas listdir might be convinient we also offer scandir, which returns a list of DirEntry [https://github.com/octoenergy/tentaclio/blob/ddbc28615de4b99106b956556db74a20e4761afe/src/tentaclio/fs/scanner.py#L13]s, and, walk. All functions follow as closely as possible their standard library definitions.

Database access

In order to open db connections you can use tentaclio.db and have instant access to postgres, sqlite, athena and mssql.

import tentaclio

[...]

query = "select 1";
with tentaclio.db(POSTGRES_TEST_URL) as client:
 result =client.query(query)
[...]

The supported db schemes are:

Default:

	sqlite://

	mssql://

	
	Any other scheme supported by sqlalchemy.

tentaclio-postgres [https://github.com/octoenergy/tentaclio-postgres]

	postgresql://

tentaclio-athena [https://github.com/octoenergy/tentaclio-athena]

	awsathena+rest://

tentaclio-databricks [https://github.com/octoenergy/tentaclio-databricks]

	databricks+thrift://

tentaclio-snowflake [https://github.com/octoenergy/tentaclio-snowflake]

	snowflake://

Extras for databases

For postgres you can set the variable TENTACLIO__PG_APPLICATION_NAME and the value will be injected
when connecting to the database.

Automatic credentials injection

	Configure credentials by using environmental variables prefixed with TENTACLIO__CONN__ (i.e. TENTACLIO__CONN__DATA_FTP=sfpt://real_user:132ldsf@ftp.octoenergy.com).

	Open a stream:

with tentaclio.open("sftp://ftp.octoenergy.com/file.csv") as reader:
 reader.read()

The credentials get injected into the url.

	Open a db client:

import tentaclio

with tentaclio.db("postgresql://hostname/my_data_base") as client:
 client.query("select 1")

Note that hostname in the url to be authenticated is a wildcard that will match any hostname. So authenticate("http://hostname/file.txt") will be injected to http://user:pass@octo.co/file.txt if the credential for http://user:pass@octo.co/ exists.

Different components of the URL are set differently:

	Scheme and path will be set from the URL, and null if missing.

	Username, password and hostname will be set from the stored credentials.

	Port will be set from the stored credentials if it exists, otherwise from the URL.

	Query will be set from the URL if it exists, otherwise from the stored credentials (so it can be
overriden)

Credentials file

You can also set a credentials file that looks like:

secrets:
 db_1: postgresql://user1:pass1@myhost.com/database_1
 db_2: mssql://user2:pass2@otherhost.com/database_2?driver=ODBC+Driver+17+for+SQL+Server
 ftp_server: ftp://fuser:fpass@ftp.myhost.com

And make it accessible to tentaclio by setting the environmental variable TENTACLIO__SECRETS_FILE. The actual name of each url is for traceability and has no effect in the functionality.

(Note that you may need to add ?driver={driver from /usr/local/etc/odbcinst.ini} for mssql database connection strings; see above example)

Alternatively you can run curl https://raw.githubusercontent.com/octoenergy/tentaclio/master/extras/init_tentaclio.sh to create a secrets file in ~/.tentaclio.yml and
automatically configure your environment.

Quick note on protocols structural subtyping.

In order to abstract concrete dependencies from the implementation of data related functions (or in any part of the system really) we use typed protocols [https://mypy.readthedocs.io/en/latest/protocols.html#simple-user-defined-protocols]. This allows a more flexible dependency injection than using subclassing or more complex approches [http://code.activestate.com/recipes/413268/]. This idea is heavily inspired by how this exact thing is done in go [https://www.youtube.com/watch?v=ifBUfIb7kdo]. Learn more about this principle in our tech blog [https://tech.octopus.energy/news/2019/03/21/python-interfaces-a-la-go.html].

Documentation

Tentaclio uses reStructuredText [https://docutils.sourceforge.io/rst.html] (Restructured Text), MyST [https://myst-parser.readthedocs.io/en/latest/] (Markedly Structured Text) and
the Sphinx [https://www.sphinx-doc.org/] documentation system. This allows it to be built into other forms for easier
viewing and browsing.

Building docs

To create an HTML version of the docs, use:

$ cd docs

$ make html

This will generate a static set of HTML files with root docs/_build/html/index.html. This can be
viewed in a browser

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Tentaclio’s documentation!

 		
 Tentaclio

 		
 Quick Examples.

 		
 Read and write streams.

 		
 Copy streams

 		
 Delete resources

 		
 List resources

 		
 Authenticated resources.

 		
 Database connections.

 		
 Pandas interaction.

 		
 Installation

 		
 Developing.

 		
 How to use

 		
 Streams

 		
 File system like operations to resources

 		
 Database access

 		
 Automatic credentials injection

 		
 Quick note on protocols structural subtyping.

 		
 Documentation

 		
 Building docs

_static/plus.png

_static/file.png

_static/minus.png

